Semimodular lattices and the Hall-Dilworth gluing construction

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semimodular Lattices and the Hall–dilworth Gluing Construction

We present a new gluing construction for semimodular lattices, related to the Hall–Dilworth construction. The gluing constructions in the lattice theory started with a paper of M. Hall and R. P. Dilworth [4] to prove that there exists a modular lattice that cannot be embedded in any complemented modular lattice. This construction is the following: let K and L be lattices, let F be a filter of K...

متن کامل

A Construction of Semimodular Lattices

In this paper we prove that if !.l' is a finite lattice. and r is an integral valued function on !.l' satisfying some very natural then there exists a finite geometric (that is.• semimodular and atomistic) lattice containing asa sublatticesuch that r !.l'restricted to Sf. Moreover. we show that if, for all intervals of. semimodular lattices of length at most r(e) are given. then can be chosen t...

متن کامل

Semimodular Lattices and Semibuildings

In a ranked lattice, we consider two maximal chains, or “flags” to be i-adjacent if they are equal except possibly on rank i . Thus, a finite rank lattice is a chamber system. If the lattice is semimodular, as noted in [9], there is a “Jordan-Hölder permutation” between any two flags. This permutation has the properties of an Sn-distance function on the chamber system of flags. Using these noti...

متن کامل

Slim Semimodular Lattices. II. A Description by Patchwork Systems

Rectangular lattices are special planar semimodular lattices introduced by G. Grätzer and E. Knapp in 2009. By a patch lattice we mean a rectangular lattice whose weak corners are coatoms. As a sort of gluings, we introduce the concept of a patchwork system. We prove that every glued sum indecomposable planar semimodular lattice is a patchwork of its maximal patch lattice intervals “sewn togeth...

متن کامل

Frankl’s Conjecture for Large Semimodular and Planar Semimodular Lattices

A lattice L is said to satisfy (the lattice theoretic version of) Frankl’s conjecture if there is a join-irreducible element f ∈ L such that at most half of the elements x of L satisfy f ≤ x. Frankl’s conjecture, also called as union-closed sets conjecture, is well-known in combinatorics, and it is equivalent to the statement that every finite lattice satisfies Frankl’s conjecture. Let m denote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica Hungarica

سال: 2010

ISSN: 0236-5294,1588-2632

DOI: 10.1007/s10474-010-9120-z